Modified Soft Brood Crossover in Genetic Programming
نویسندگان
چکیده
Premature convergence is one of the important issues while using Genetic Programming for data modeling. It can be avoided by improving population diversity. Intelligent genetic operators can help to improve the population diversity. Crossover is an important operator in Genetic Programming. So, we have analyzed number of intelligent crossover operators and proposed an algorithm with the modification of soft brood crossover operator. It will help to improve the population diversity and reduce the premature convergence. We have performed experiments on three different symbolic regression problems. Then we made the performance comparison of our proposed crossover (Modified Soft Brood Crossover) with the existing soft brood crossover and subtree crossover operators. Index Terms – Intelligent Crossover, Genetic Programming, Soft Brood Crossover
منابع مشابه
Improving Crossover in Genetic Programming for Image Recognition
Crossover operator is the predominant operator in most of Genetic Programming (GP) system. The empirical evidence shows that along with building blocks are constructed bigger and bigger as GP evolution proceeds, the crossover operator tends to disrupt those building blocks rather than preserve them. The traditional GP crossover primarily acts as macromutation. Looseness is used for representing...
متن کاملOn the Success Rate of Crossover Operators for Genetic Programming with Offspring Selection
Genetic programming is a powerful heuristic search technique that is used for a number of real world applications to solve amongst others regression, classification, and time-series forecasting problems. A lot of progress towards a theoretic description of genetic programming in form of schema theorems has been made, but the internal dynamics and success factors of genetic programming are still...
متن کاملImproved evolvability in genetic programming with polyandry
This paper proposes Polyandry, a new nature-inspired modification to canonical Genetic Programming (GP). Polyandry aims to improve evolvability in GP. Evolvability is a critically important GP trait, the maintenance of which determines the arrival of the GP at a global optimum solution. Specifically evolvability is defined as the ability of the genetic operators employed in GP to produce offspr...
متن کاملDimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)
This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...
متن کاملComparison of Three Soft Computing Methods in Estimating Apparent Shear Stress in Compound Channels
Apparent shear stress acting on a vertical interface between the main channel and floodplain in a compound channel serves to quantify the momentum transfer between sub sections of this cross section. In this study, three soft computing methods are used to simulate apparent shear stress in prismatic compound channels. The Genetic Algorithm Artificial neural network (GAA), Genetic Programming (GP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1304.3610 شماره
صفحات -
تاریخ انتشار 2013